3.6.54 \(\int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx\) [554]

3.6.54.1 Optimal result
3.6.54.2 Mathematica [A] (verified)
3.6.54.3 Rubi [A] (verified)
3.6.54.4 Maple [A] (verified)
3.6.54.5 Fricas [C] (verification not implemented)
3.6.54.6 Sympy [F(-1)]
3.6.54.7 Maxima [F]
3.6.54.8 Giac [F]
3.6.54.9 Mupad [F(-1)]

3.6.54.1 Optimal result

Integrand size = 23, antiderivative size = 113 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=-\frac {9 \sqrt {7} E\left (\frac {1}{2} (c+\pi +d x)|\frac {8}{7}\right )}{20 d}+\frac {23 \operatorname {EllipticF}\left (\frac {1}{2} (c+\pi +d x),\frac {8}{7}\right )}{20 \sqrt {7} d}-\frac {\sqrt {3-4 \cos (c+d x)} \sin (c+d x)}{10 d}-\frac {\sqrt {3-4 \cos (c+d x)} \cos (c+d x) \sin (c+d x)}{10 d} \]

output
-23/140*(sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)*EllipticF(cos(1/2* 
d*x+1/2*c),2/7*14^(1/2))/d*7^(1/2)+9/20*(sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1 
/2*d*x+1/2*c)*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2))/d*7^(1/2)-1/10*si 
n(d*x+c)*(3-4*cos(d*x+c))^(1/2)/d-1/10*cos(d*x+c)*sin(d*x+c)*(3-4*cos(d*x+ 
c))^(1/2)/d
 
3.6.54.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.90 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\frac {9 \sqrt {-3+4 \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |8\right )+23 \sqrt {-3+4 \cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),8\right )-4 \sin (c+d x)+\sin (2 (c+d x))+2 \sin (3 (c+d x))}{20 d \sqrt {3-4 \cos (c+d x)}} \]

input
Integrate[Cos[c + d*x]^3/Sqrt[3 - 4*Cos[c + d*x]],x]
 
output
(9*Sqrt[-3 + 4*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 8] + 23*Sqrt[-3 + 4*Co 
s[c + d*x]]*EllipticF[(c + d*x)/2, 8] - 4*Sin[c + d*x] + Sin[2*(c + d*x)] 
+ 2*Sin[3*(c + d*x)])/(20*d*Sqrt[3 - 4*Cos[c + d*x]])
 
3.6.54.3 Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.09, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3272, 27, 3042, 3502, 27, 3042, 3231, 3042, 3133, 3141}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^3}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3272

\(\displaystyle -\frac {1}{10} \int \frac {3 \left (-2 \cos ^2(c+d x)-2 \cos (c+d x)+1\right )}{\sqrt {3-4 \cos (c+d x)}}dx-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {3}{10} \int \frac {-2 \cos ^2(c+d x)-2 \cos (c+d x)+1}{\sqrt {3-4 \cos (c+d x)}}dx-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3}{10} \int \frac {-2 \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 \sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle -\frac {3}{10} \left (\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d}-\frac {1}{6} \int -\frac {2 (1-9 \cos (c+d x))}{\sqrt {3-4 \cos (c+d x)}}dx\right )-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {3}{10} \left (\frac {1}{3} \int \frac {1-9 \cos (c+d x)}{\sqrt {3-4 \cos (c+d x)}}dx+\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d}\right )-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3}{10} \left (\frac {1}{3} \int \frac {1-9 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d}\right )-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 3231

\(\displaystyle -\frac {3}{10} \left (\frac {1}{3} \left (\frac {9}{4} \int \sqrt {3-4 \cos (c+d x)}dx-\frac {23}{4} \int \frac {1}{\sqrt {3-4 \cos (c+d x)}}dx\right )+\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d}\right )-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3}{10} \left (\frac {1}{3} \left (\frac {9}{4} \int \sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {23}{4} \int \frac {1}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d}\right )-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 3133

\(\displaystyle -\frac {3}{10} \left (\frac {1}{3} \left (\frac {9 \sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{2 d}-\frac {23}{4} \int \frac {1}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d}\right )-\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}\)

\(\Big \downarrow \) 3141

\(\displaystyle -\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)} \cos (c+d x)}{10 d}-\frac {3}{10} \left (\frac {\sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d}+\frac {1}{3} \left (\frac {9 \sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{2 d}-\frac {23 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x+\pi ),\frac {8}{7}\right )}{2 \sqrt {7} d}\right )\right )\)

input
Int[Cos[c + d*x]^3/Sqrt[3 - 4*Cos[c + d*x]],x]
 
output
-1/10*(Sqrt[3 - 4*Cos[c + d*x]]*Cos[c + d*x]*Sin[c + d*x])/d - (3*(((9*Sqr 
t[7]*EllipticE[(c + Pi + d*x)/2, 8/7])/(2*d) - (23*EllipticF[(c + Pi + d*x 
)/2, 8/7])/(2*Sqrt[7]*d))/3 + (Sqrt[3 - 4*Cos[c + d*x]]*Sin[c + d*x])/(3*d 
)))/10
 

3.6.54.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3133
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 - b]/d)*EllipticE[(1/2)*(c + Pi/2 + d*x), -2*(b/(a - b))], x] /; FreeQ[{a, 
 b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]
 

rule 3141
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a - b]))*EllipticF[(1/2)*(c + Pi/2 + d*x), -2*(b/(a - b))], x] /; FreeQ 
[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3272
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
 + n))   Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d 
*(m + n) + b^2*(b*c*(m - 2) + a*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 
 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m 
] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[a, 0] 
&& NeQ[c, 0])))
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.6.54.4 Maple [A] (verified)

Time = 4.36 (sec) , antiderivative size = 254, normalized size of antiderivative = 2.25

method result size
default \(-\frac {\sqrt {-\left (8 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-448 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+504 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-56 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+23 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {56 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 \sqrt {14}}{7}\right )-63 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {56 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 \sqrt {14}}{7}\right )\right )}{140 \sqrt {8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-8 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7}\, d}\) \(254\)

input
int(cos(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/140*(-(8*cos(1/2*d*x+1/2*c)^2-7)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-448*cos( 
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+504*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1 
/2*c)-56*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+23*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2/7* 
14^(1/2))-63*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2 
)*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2)))/(8*sin(1/2*d*x+1/2*c)^4-sin( 
1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-8*cos(1/2*d*x+1/2*c)^2+7)^(1/ 
2)/d
 
3.6.54.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.20 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=-\frac {4 \, {\left (\cos \left (d x + c\right ) + 1\right )} \sqrt {-4 \, \cos \left (d x + c\right ) + 3} \sin \left (d x + c\right ) + 7 \, \sqrt {2} {\rm weierstrassPInverse}\left (-1, -1, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) - \frac {1}{2}\right ) + 7 \, \sqrt {2} {\rm weierstrassPInverse}\left (-1, -1, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) - \frac {1}{2}\right ) - 18 \, \sqrt {2} {\rm weierstrassZeta}\left (-1, -1, {\rm weierstrassPInverse}\left (-1, -1, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) - \frac {1}{2}\right )\right ) - 18 \, \sqrt {2} {\rm weierstrassZeta}\left (-1, -1, {\rm weierstrassPInverse}\left (-1, -1, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) - \frac {1}{2}\right )\right )}{40 \, d} \]

input
integrate(cos(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-1/40*(4*(cos(d*x + c) + 1)*sqrt(-4*cos(d*x + c) + 3)*sin(d*x + c) + 7*sqr 
t(2)*weierstrassPInverse(-1, -1, cos(d*x + c) + I*sin(d*x + c) - 1/2) + 7* 
sqrt(2)*weierstrassPInverse(-1, -1, cos(d*x + c) - I*sin(d*x + c) - 1/2) - 
 18*sqrt(2)*weierstrassZeta(-1, -1, weierstrassPInverse(-1, -1, cos(d*x + 
c) + I*sin(d*x + c) - 1/2)) - 18*sqrt(2)*weierstrassZeta(-1, -1, weierstra 
ssPInverse(-1, -1, cos(d*x + c) - I*sin(d*x + c) - 1/2)))/d
 
3.6.54.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**3/(3-4*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.6.54.7 Maxima [F]

\[ \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3}}{\sqrt {-4 \, \cos \left (d x + c\right ) + 3}} \,d x } \]

input
integrate(cos(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(cos(d*x + c)^3/sqrt(-4*cos(d*x + c) + 3), x)
 
3.6.54.8 Giac [F]

\[ \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3}}{\sqrt {-4 \, \cos \left (d x + c\right ) + 3}} \,d x } \]

input
integrate(cos(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^3/sqrt(-4*cos(d*x + c) + 3), x)
 
3.6.54.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3}{\sqrt {3-4\,\cos \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)^3/(3 - 4*cos(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)^3/(3 - 4*cos(c + d*x))^(1/2), x)